Исследовать разрывы в функции y= 1+x/1+x^2 Просто я не понимаю как высчитывать предел, если область определения равна R

18 Ноя 2023 в 19:41
20 +1
0
Ответы
1

Для того чтобы исследовать разрывы функции y= 1+x/1+x^2, нужно выяснить, в каких точках функция может иметь разрывы. Разрывы могут быть следующих видов:

Разрывы первого рода (скачки) - возникают, когда предел функции слева и справа от точки не существует или не равны.Разрывы второго рода (особые точки) - возникают, когда функция не определена в некоторых точках.

Теперь рассмотрим функцию y= 1+x/1+x^2. Она является рациональной функцией, поэтому ее областью определения является множество всех действительных чисел R.

Для исследования разрывов первого рода мы должны найти предел функции в точках, где он может быть несуществующим или различным слева и справа от этой точки. Например, можно исследовать поведение функции при x=0 и x=-1 (как точки пересечения графика с осями координат).

Для исследования разрывов второго рода нужно найти точки, в которых функция не определена. В данном случае функция y= 1+x/1+x^2 непрерывна на всей области определения, так как ее знаменатель (1+x^2) никогда не обращается в ноль для любого значения x.

Таким образом, функция y= 1+x/1+x^2 не имеет разрывов (ни первого, ни второго рода) на всей своей области определения R.

16 Апр 2024 в 15:48
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 091 автору
Первые отклики появятся уже в течение 10 минут
Прямой эфир