Для начала посчитаем длину гипотенузы треугольника АВС:
BC = √(AB^2 + AC^2) = √(13^2 + 13^2) = √(2 * 13^2) = 13√2
Теперь посчитаем длину отрезка ВС:CV = BC/2 = 13√2 / 2 = 6.5√2
Так как треугольник АВС - равнобедренный, то стороны АВ и АС равны и равны 13. Значит, треугольник ABK также равнобедренный. Отсюда КА = 13.
Теперь мы можем применить теорему Пифагора к треугольнику ABK:
AK^2 = AB^2 - BK^2AK^2 = 13^2 - 12^2AK^2 = 169 - 144AK^2 = 25AK = 5
Итак, длина отрезка АК равна 5.
Для начала посчитаем длину гипотенузы треугольника АВС:
BC = √(AB^2 + AC^2) = √(13^2 + 13^2) = √(2 * 13^2) = 13√2
Теперь посчитаем длину отрезка ВС:
CV = BC/2 = 13√2 / 2 = 6.5√2
Так как треугольник АВС - равнобедренный, то стороны АВ и АС равны и равны 13. Значит, треугольник ABK также равнобедренный. Отсюда КА = 13.
Теперь мы можем применить теорему Пифагора к треугольнику ABK:
AK^2 = AB^2 - BK^2
AK^2 = 13^2 - 12^2
AK^2 = 169 - 144
AK^2 = 25
AK = 5
Итак, длина отрезка АК равна 5.