a = (4, 1, -2)b = (-3, 2, 5)
|a| = sqrt(4^2 + 1^2 + (-2)^2) = sqrt(16 + 1 + 4) = sqrt(21)
|b| = sqrt((-3)^2 + 2^2 + 5^2) = sqrt(9 + 4 + 25) = sqrt(38)
a b = 4(-3) + 12 + (-2)5 = -12 + 2 - 10 = -20
cosθ = (a b) / (|a| |b|) = -20 / (sqrt(21) * sqrt(38)) ≈ -0.5526
Для векторов a(-1, 0, 3) и b(2, 7, 4):
|a| = sqrt((-1)^2 + 0^2 + 3^2) = sqrt(1 + 0 + 9) = sqrt(10)
|b| = sqrt(2^2 + 7^2 + 4^2) = sqrt(4 + 49 + 16) = sqrt(69)
a b = -12 + 07 + 34 = -2 + 0 + 12 = 10
cosθ = (a b) / (|a| |b|) = 10 / (sqrt(10) * sqrt(69)) ≈ 0.4194
Для векторов a(2, 0, -4) и b(1, -1, 3):
|a| = sqrt(2^2 + 0^2 + (-4)^2) = sqrt(4 + 0 + 16) = sqrt(20)
|b| = sqrt(1^2 + (-1)^2 + 3^2) = sqrt(1 + 1 + 9) = sqrt(11)
a b = 21 + 0(-1) + (-4)3 = 2 + 0 - 12 = -10
cosθ = (a b) / (|a| |b|) = -10 / (sqrt(20) * sqrt(11)) ≈ -0.7454
a = (4, 1, -2)
b = (-3, 2, 5)
|a| = sqrt(4^2 + 1^2 + (-2)^2) = sqrt(16 + 1 + 4) = sqrt(21)
|b| = sqrt((-3)^2 + 2^2 + 5^2) = sqrt(9 + 4 + 25) = sqrt(38)
a b = 4(-3) + 12 + (-2)5 = -12 + 2 - 10 = -20
cosθ = (a b) / (|a| |b|) = -20 / (sqrt(21) * sqrt(38)) ≈ -0.5526
Для векторов a(-1, 0, 3) и b(2, 7, 4):
|a| = sqrt((-1)^2 + 0^2 + 3^2) = sqrt(1 + 0 + 9) = sqrt(10)
|b| = sqrt(2^2 + 7^2 + 4^2) = sqrt(4 + 49 + 16) = sqrt(69)
a b = -12 + 07 + 34 = -2 + 0 + 12 = 10
cosθ = (a b) / (|a| |b|) = 10 / (sqrt(10) * sqrt(69)) ≈ 0.4194
Для векторов a(2, 0, -4) и b(1, -1, 3):
|a| = sqrt(2^2 + 0^2 + (-4)^2) = sqrt(4 + 0 + 16) = sqrt(20)
|b| = sqrt(1^2 + (-1)^2 + 3^2) = sqrt(1 + 1 + 9) = sqrt(11)
a b = 21 + 0(-1) + (-4)3 = 2 + 0 - 12 = -10
cosθ = (a b) / (|a| |b|) = -10 / (sqrt(20) * sqrt(11)) ≈ -0.7454