Решите задачу по геометрии. Подобие треугольников В параллелограмме ABCD, стороны которого относятся как 8 : 3, проведены биссектрисы углов BAD и ADC, пересекающие сторону BC в точках M и N соответственно. Прямые AM и DN пересекаются в точке E. Найдите площадь треугольника AED, если MN = 4, а высота параллелограмма, проведённая к стороне AD, равна 3

7 Фев в 19:40
22 +1
0
Ответы
1

Поскольку треугольники BAD и ADC подобны параллелограмму ABCD, и их биссектрисы пересекают сторону BC параллелограмма в точках M и N, соответственно, то AM и DN являются высотами треугольников BAD и ADC.

Таким образом, AM и DN являются высотами треугольников BAD и ADC, пересекающимися в точке E. Поэтому высота AED также равна 3.

Теперь мы знаем, что высота треугольника AED равна 3, а MN = 4. Так как высота AED проведена к стороне AD параллелограмма, то площадь треугольника AED равна (3 * 4) / 2 = 6.

Итак, площадь треугольника AED равна 6.

16 Апр в 15:37
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 588 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир