Для начала, найдем косинус угла a, используя тригонометрическое тождество sin^2(a) + cos^2(a) = 1:
cos^2(a) = 1 - sin^2(a) = 1 - (5/13)^2 = 1 - 25/169 = 144/169cos(a) = sqrt(144/169) = 12/13
Теперь можем найти tg(a), ctg(a) и sin(a) для угла a во второй четверти:
tg(a) = sin(a) / cos(a) = (5/13) / (12/13) = 5/12ctg(a) = cos(a) / sin(a) = (12/13) / (5/13) = 12/5sin(a) = 5/13
Итак, sin(a) = 5/13, tg(a) = 5/12, ctg(a) = 12/5.
Для начала, найдем косинус угла a, используя тригонометрическое тождество sin^2(a) + cos^2(a) = 1:
cos^2(a) = 1 - sin^2(a) = 1 - (5/13)^2 = 1 - 25/169 = 144/169
cos(a) = sqrt(144/169) = 12/13
Теперь можем найти tg(a), ctg(a) и sin(a) для угла a во второй четверти:
tg(a) = sin(a) / cos(a) = (5/13) / (12/13) = 5/12
ctg(a) = cos(a) / sin(a) = (12/13) / (5/13) = 12/5
sin(a) = 5/13
Итак, sin(a) = 5/13, tg(a) = 5/12, ctg(a) = 12/5.