У "стандартного" унитарного характера группы SO(2) есть какое-нибудь специальное название? Грубо говоря, если наша специальная ортогональная матрица порядка 2 поворачивает на угол phi, мы ставим ей в соответствие число exp(i*phi).
Как такой характер называется в алгебре?

14 Дек в 19:41
2 +1
0
Ответы
1

В алгебре, такой характер групповой теории называется экспоненциальным характером или характером вращений (или же характером поворотов). В случае группы SO(2), представляющей собой вращения в двухмерном пространстве, соответствующий характер устанавливает соответствие между элементами группы (поворотами на угол (\phi)) и комплексными числами вида (e^{i\phi}), где (i) — мнимая единица.

Такой подход также тесно связан с представлением групп и их структурой, особенно в контексте теории представлений, где рассматриваются линейные представления групп, и для SO(2) это именно представление, связанное с вращениями в комплексной плоскости.

В более общем смысле, такие характеры часто исследуются в контексте функций, отображающих элементы группы в поля чисел (например, в комплексные числа), что является фундаментальным аспектом теории представлений.

14 Дек в 19:52
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 94 362 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир