To find the value of cos(210°) + sin(150°) - tan(240°), we need to first determine the trigonometric values for each angle.
cos(210°) = cos(180° + 30°) = -cos(30°) = -√3/2sin(150°) = sin(180° - 30°) = sin(30°) = 1/2tan(240°) = tan(240° - 180°) = tan(60°) = √3
Now we can substitute these values into the expression:
-√3/2 + 1/2 - √3 = -√3/2 + 1/2 - √3
Simplifying further, we get:
Therefore, cos(210°) + sin(150°) - tan(240°) = -√3/2 + 1/2 - √3.
To find the value of cos(210°) + sin(150°) - tan(240°), we need to first determine the trigonometric values for each angle.
cos(210°) = cos(180° + 30°) = -cos(30°) = -√3/2
sin(150°) = sin(180° - 30°) = sin(30°) = 1/2
tan(240°) = tan(240° - 180°) = tan(60°) = √3
Now we can substitute these values into the expression:
-√3/2 + 1/2 - √3 = -√3/2 + 1/2 - √3
Simplifying further, we get:
-√3/2 + 1/2 - √3 = -√3/2 + 1/2 - √3
Therefore, cos(210°) + sin(150°) - tan(240°) = -√3/2 + 1/2 - √3.