Для решения этой задачи нужно использовать формулу движения:(d = v \cdot t),где d - расстояние, v - скорость, t - время.
Для движения против течения:(d_1 = (v - 1) \cdot t_1),где v = 1 км/ч (скорость течения), t = 7 часов.
Подставляем известные значения:(d_1 = (1 - 1) \cdot 7 = 0\cdot7 = 0) км.
Теперь, для движения по течению:(d_2 = (v + 1) \cdot t_2).
Мы знаем, что (d_1 = 119) км и (t_1 = 7) часов.Таким образом, (d_1 = d_2) и (t_1 = t_2).
Подставляем значения и находим (d_2):(119 = (1 + 1) \cdot t_2),(119 = 2 \cdot t_2),(t_2 = 119 / 2 = 59.5) часов.
Затем находим (d_2):(d_2 = 2 \cdot 59.5 = 119) км.
Таким образом, теплоход, двигаясь по течению, пройдет 119 км за 59.5 часов.
Для решения этой задачи нужно использовать формулу движения:
(d = v \cdot t),
где d - расстояние, v - скорость, t - время.
Для движения против течения:
(d_1 = (v - 1) \cdot t_1),
где v = 1 км/ч (скорость течения), t = 7 часов.
Подставляем известные значения:
(d_1 = (1 - 1) \cdot 7 = 0\cdot7 = 0) км.
Теперь, для движения по течению:
(d_2 = (v + 1) \cdot t_2).
Мы знаем, что (d_1 = 119) км и (t_1 = 7) часов.
Таким образом, (d_1 = d_2) и (t_1 = t_2).
Подставляем значения и находим (d_2):
(119 = (1 + 1) \cdot t_2),
(119 = 2 \cdot t_2),
(t_2 = 119 / 2 = 59.5) часов.
Затем находим (d_2):
(d_2 = 2 \cdot 59.5 = 119) км.
Таким образом, теплоход, двигаясь по течению, пройдет 119 км за 59.5 часов.