Вычислим производные.
1) y ' = (3^x - x^(-2)) ' = (3^x) ' - (1/x^2) ' = 3^x * ln 3 - (-2) * 1/x^3 = 3^x + 2/x^3;
2) f ' (x) = (x^2 - x) * cos^2 x = (x^2 - x) ' * cos^2 x + (cos^2 x) ' * (x^2 - x) = (2 * x - 1) * cos^2 x + (x^2 - x) * 2 * cos x * (-sin x) = (2 * x - 1) * cos^2 x - (x^2 - x) * sin (2 * x).
Вычислим производные.
1) y ' = (3^x - x^(-2)) ' = (3^x) ' - (1/x^2) ' = 3^x * ln 3 - (-2) * 1/x^3 = 3^x + 2/x^3;
2) f ' (x) = (x^2 - x) * cos^2 x = (x^2 - x) ' * cos^2 x + (cos^2 x) ' * (x^2 - x) = (2 * x - 1) * cos^2 x + (x^2 - x) * 2 * cos x * (-sin x) = (2 * x - 1) * cos^2 x - (x^2 - x) * sin (2 * x).