To simplify the expression (\frac{6y-7x}{2x} : (492-36y^2)), we first need to factor the denominator on the right side of the division sign.
(\frac{6y-7x}{2x} : (492-36y^2) = \frac{6y-7x}{2x} : (2(246-18y^2)))
Next, we can simplify the expression by dividing both the numerator and denominator by 2:
= (\frac{3y - \frac{7}{2}x}{x} : (246-18y^2))
Therefore, the simplified expression is: (\frac{3y - \frac{7}{2}x}{x} : (246-18y^2))
To simplify the expression (\frac{6y-7x}{2x} : (492-36y^2)), we first need to factor the denominator on the right side of the division sign.
(\frac{6y-7x}{2x} : (492-36y^2) = \frac{6y-7x}{2x} : (2(246-18y^2)))
Next, we can simplify the expression by dividing both the numerator and denominator by 2:
= (\frac{3y - \frac{7}{2}x}{x} : (246-18y^2))
Therefore, the simplified expression is: (\frac{3y - \frac{7}{2}x}{x} : (246-18y^2))