Для решения уравнения log3x + log9x + log27x = 11/12, можно использовать свойства логарифмов.
log3x + log9x + log27x = log(3x 9x 27x)
log(3 9 27 * x^3) = log(2187x^3)
11/12 = log(2187x^3)11/12 = 3 log(2187x)11/12 = 3 (log2187 + logx)11/12 = 3 (log2187 + logx)11/12 = 3 (log3^7 + logx)11/12 = 3 * (7log3 + logx)11/12 = 21log3 + 3logx11/12 - 21log3 = 3logx11/12 - 21log3 = log(x^3)
11/12 - 21log3 = log(x^3)11/12 - log(3^21) = log(x^3)11/12 - log(3^21) = log(x^3)11/12 - log(3^21) = log(x^3)
e^(11/12) - 3^21 = x^3e^(11/12) - 3^21 = x^3
x = (e^(11/12) - 3^21)^(1/3)
Для решения уравнения log3x + log9x + log27x = 11/12, можно использовать свойства логарифмов.
Преобразуем логарифмы суммой:log3x + log9x + log27x = log(3x 9x 27x)
Упростим выражение:log(3 9 27 * x^3) = log(2187x^3)
По свойству логарифмов: log(a^b) = b * log(a)11/12 = log(2187x^3)
По свойству логарифмов: log(a * b) = loga + logb11/12 = 3 log(2187x)
11/12 = 3 (log2187 + logx)
11/12 = 3 (log2187 + logx)
11/12 = 3 (log3^7 + logx)
11/12 = 3 * (7log3 + logx)
11/12 = 21log3 + 3logx
11/12 - 21log3 = 3logx
11/12 - 21log3 = log(x^3)
11/12 - 21log3 = log(x^3)
Теперь преобразуем логарифмы в экспоненты:11/12 - log(3^21) = log(x^3)
11/12 - log(3^21) = log(x^3)
11/12 - log(3^21) = log(x^3)
e^(11/12) - 3^21 = x^3
Получаем ответ:e^(11/12) - 3^21 = x^3
x = (e^(11/12) - 3^21)^(1/3)