1) 3x - 1/4 + x + 1/3 >= 4x + 1/4 Упростим левую часть: 3x + x - 1/4 + 1/3 >= 4x + 1/4 4x - 1/4 + 1/3 >= 4x + 1/4 Общий знаменатель: (4x - 1 + 3)/(43) >= (16x + 1)/(44) (4x + 2)/(12) >= (16x + 1)/(16) Умножаем обе части на 1216 для избавления от знаменателей: 164x + 162 >= 1216x + 12 64x + 32 >= 192x + 12 32 >= 128x + 12 20 >= 128x x <= 20/128 x <= 5/32
2) 5x - 2/2 + x - 8/3 <= x Упростим левую часть: 5x - 1 + x - 8/3 <= x 6x - 1 - 8/3 <= x 6x - 11/3 <= x Общий знаменатель: (18x - 11)/3 <= 3x Умножаем обе части на 3 для избавления от знаменателей: 18x - 11 <= 9x 9x >= 11 x >= 11/9 x >= 1 2/9
Ответ: x принадлежит интервалу от 1 2/9 до 5/32, то есть 1 2/9 <= x <= 5/32.
1) 3x - 1/4 + x + 1/3 >= 4x + 1/4
Упростим левую часть:
3x + x - 1/4 + 1/3 >= 4x + 1/4
4x - 1/4 + 1/3 >= 4x + 1/4
Общий знаменатель:
(4x - 1 + 3)/(43) >= (16x + 1)/(44)
(4x + 2)/(12) >= (16x + 1)/(16)
Умножаем обе части на 1216 для избавления от знаменателей:
164x + 162 >= 1216x + 12
64x + 32 >= 192x + 12
32 >= 128x + 12
20 >= 128x
x <= 20/128
x <= 5/32
2) 5x - 2/2 + x - 8/3 <= x
Упростим левую часть:
5x - 1 + x - 8/3 <= x
6x - 1 - 8/3 <= x
6x - 11/3 <= x
Общий знаменатель:
(18x - 11)/3 <= 3x
Умножаем обе части на 3 для избавления от знаменателей:
18x - 11 <= 9x
9x >= 11
x >= 11/9
x >= 1 2/9
Ответ: x принадлежит интервалу от 1 2/9 до 5/32, то есть 1 2/9 <= x <= 5/32.