1.Решите задачу с помощью системы уравнений: Периметр прямоугольника равен 26 см. Его длина на 3 см больше ширины.Найдите стороны прямоугольника. 2. Решите систему: 1/2(х+у)=8 1/4(х-у)=4

12 Июл 2019 в 19:42
185 +1
0
Ответы
1
Обозначим длину прямоугольника за х см, а его ширину за у см.
Из условия задачи имеем систему уравнений:
2(х+у)=26 (по формуле периметра прямоугольника)
х=у+3 (длина равна ширине плюс 3)

Решим данную систему уравнений методом подстановки или методом исключения.

Подставим в первое уравнение значение х из второго уравнения:
2((у+3)+у)=26
2(2у+3)=26
4у+6=26
4у=20
у=5

Теперь найдем значение х:
х=5+3
х=8

Ответ: стороны прямоугольника равны 8 см и 5 см.

Вторая задача:
Обозначим х за первое число, а у за второе.
Имеем систему уравнений:
1/2(х+у) = 8
1/4(х-у) = 4

Решим ее методом подстановки или исключения.

Из первого уравнения:
х+у = 16
х = 16 - у

Подставим это значение во второе уравнение:
1/4((16-y) - y) = 4
1/4(16-2y)=4
16-2y=16
-2y=0
y=0

Теперь найдем х:
x=16-0
x=16

Ответ: х=16 и у=0.

20 Апр в 23:19
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 548 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир