log2 (2 * x^2 + 3 * x) = log2 (6 * x + 2);
Найдем корни.
ОДЗ:
{ 2 *x^2 + 3 * x > 0;
6 * x + 2 > 0;
{ x * (2 * x + 3) > 0;
6 * x > -2;
{ x = 2;
x = -1.5;
x = -1/3;
{ x < -.5 и x > 2;
x > -1/3;
Отсюда, x > 2.
2 * x^2 + 3 * x = 6 * x + 2;
2 * x^2 - 3 * x - 2 = 0;
D = 9 - 4 * 2 * (-2) = 25;
x = (3 + 5)/4 = 2;
x = (3 - 5)/2 = -1/2;
Ответ: х = 2.
log2 (2 * x^2 + 3 * x) = log2 (6 * x + 2);
Найдем корни.
ОДЗ:
{ 2 *x^2 + 3 * x > 0;
6 * x + 2 > 0;
{ x * (2 * x + 3) > 0;
6 * x > -2;
{ x = 2;
x = -1.5;
x = -1/3;
{ x < -.5 и x > 2;
x > -1/3;
Отсюда, x > 2.
log2 (2 * x^2 + 3 * x) = log2 (6 * x + 2);
2 * x^2 + 3 * x = 6 * x + 2;
2 * x^2 - 3 * x - 2 = 0;
D = 9 - 4 * 2 * (-2) = 25;
x = (3 + 5)/4 = 2;
x = (3 - 5)/2 = -1/2;
Ответ: х = 2.