To simplify this expression, we can factor the numerator first:
[tex]b^4-9b^2+3\sqrt{3}b-1 = (b^2 - \sqrt{3})(b^2 + \sqrt{3}) - 9b^2 + 3\sqrt{3}b - 1[/tex][tex]= (b^2 - \sqrt{3})(b^2 + \sqrt{3}) - (3b - 1)^2[/tex][tex]= (b^2 - \sqrt{3})(b^2 + \sqrt{3} - (3b - 1))(3b - 1)[/tex]
Now the expression becomes:
[tex]\frac{(b^2 - \sqrt{3})(b^2 + \sqrt{3} - (3b - 1))(3b - 1)}{3b^2-2\sqrt{3}b+1}[/tex]
At this point, you can simplify further if needed, but this is the factored form of the original expression.
To simplify this expression, we can factor the numerator first:
[tex]b^4-9b^2+3\sqrt{3}b-1 = (b^2 - \sqrt{3})(b^2 + \sqrt{3}) - 9b^2 + 3\sqrt{3}b - 1[/tex]
[tex]= (b^2 - \sqrt{3})(b^2 + \sqrt{3}) - (3b - 1)^2[/tex]
[tex]= (b^2 - \sqrt{3})(b^2 + \sqrt{3} - (3b - 1))(3b - 1)[/tex]
Now the expression becomes:
[tex]\frac{(b^2 - \sqrt{3})(b^2 + \sqrt{3} - (3b - 1))(3b - 1)}{3b^2-2\sqrt{3}b+1}[/tex]
At this point, you can simplify further if needed, but this is the factored form of the original expression.