To simplify (3-√2)^2, first expand the expression:
(3-√2)^2 = (3-√2)(3-√2)= 3(3) + 3(-√2) - √2(3) - √2(-√2)= 9 - 3√2 - 3√2 + 2= 11 - 6√2
Therefore, (3-√2)^2 simplifies to 11 - 6√2.
Next, simplify the expression 10√3-4√48-√75:
√48 = √(163) = √16 √3 = 4√3
Therefore, 10√3 - 4√48 - √75 becomes:
10√3 - 4(4√3) - √75= 10√3 - 16√3 - √75= -6√3 - √75
So, the final simplified expression is 11 - 6√2 - 6√3 - √75.
To simplify (3-√2)^2, first expand the expression:
(3-√2)^2 = (3-√2)(3-√2)
= 3(3) + 3(-√2) - √2(3) - √2(-√2)
= 9 - 3√2 - 3√2 + 2
= 11 - 6√2
Therefore, (3-√2)^2 simplifies to 11 - 6√2.
Next, simplify the expression 10√3-4√48-√75:
√48 = √(163) = √16 √3 = 4√3
Therefore, 10√3 - 4√48 - √75 becomes:
10√3 - 4(4√3) - √75
= 10√3 - 16√3 - √75
= -6√3 - √75
So, the final simplified expression is 11 - 6√2 - 6√3 - √75.