To solve this equation, we can use the pythagorean identity sin^2(x) + cos^2(x) = 1.
Substitute sin^2(x) = 1 - cos^2(x) into the equation:
2(1 - cos^2(x)) - 2sin(x)cos(x) - 2cos^2(x) = 1
Distribute the 2:
2 - 2cos^2(x) - 2sin(x)cos(x) - 2cos^2(x) = 1
Combine like terms:
-4cos^2(x) - 2sin(x)cos(x) = -1
Divide all terms by -1:
4cos^2(x) + 2sin(x)cos(x) = 1
Now, use the double angle identity for cosine: cos(2x) = 2cos^2(x) - 1
Substitute 2cos^2(x) - 1 for cos(2x) in the equation:
4(1/2 + 1/2 cos(2x)) + 2sin(x)cos(x) = 1
2 + 2cos(2x) + 2sin(x)cos(x) = 1
Rearranging the terms:
2sin(x)cos(x) + 2cos(2x) = -1
Now, use the double angle identity for sine: sin(2x) = 2sin(x)cos(x)
Substitute sin(2x) for 2sin(x)cos(x) in the equation:
sin(2x) + 2cos(2x) = -1
Therefore, the solution to the equation 2sin^2(x) - 2sin(x)cos(x) - 2cos^2(x) = 1 is sin(2x) + 2cos(2x) = -1.
To solve this equation, we can use the pythagorean identity sin^2(x) + cos^2(x) = 1.
Substitute sin^2(x) = 1 - cos^2(x) into the equation:
2(1 - cos^2(x)) - 2sin(x)cos(x) - 2cos^2(x) = 1
Distribute the 2:
2 - 2cos^2(x) - 2sin(x)cos(x) - 2cos^2(x) = 1
Combine like terms:
-4cos^2(x) - 2sin(x)cos(x) = -1
Divide all terms by -1:
4cos^2(x) + 2sin(x)cos(x) = 1
Now, use the double angle identity for cosine: cos(2x) = 2cos^2(x) - 1
Substitute 2cos^2(x) - 1 for cos(2x) in the equation:
4(1/2 + 1/2 cos(2x)) + 2sin(x)cos(x) = 1
2 + 2cos(2x) + 2sin(x)cos(x) = 1
Rearranging the terms:
2sin(x)cos(x) + 2cos(2x) = -1
Now, use the double angle identity for sine: sin(2x) = 2sin(x)cos(x)
Substitute sin(2x) for 2sin(x)cos(x) in the equation:
sin(2x) + 2cos(2x) = -1
Therefore, the solution to the equation 2sin^2(x) - 2sin(x)cos(x) - 2cos^2(x) = 1 is sin(2x) + 2cos(2x) = -1.