3) Молодая телеведущая решила приобрести для выступления 1 костюм, который состоит из блузки и юбки (в грн.). Найти стоимость такого костюма, если известно, что на китайской оптовой базе стоимость 4 блузок и 2 юбки стоят 420грн., а стоимость 3 блузок и 5 юбок составляет 630грн. 4) Маленький мальчик получил от Деда Мороза в подарок пакет с конфетами. Мальчик понял, что конфеты можно разложить 4,6 и 5 рядов , чтобы в каждом ряду было одинаковое количество конфет. Какое минимальное количество конфет могла быть в пакете?
3) Let the cost of one blouse be x, and the cost of one skirt be y. From the given information: 4x + 2y = 420 3x + 5y = 630
To find the cost of the suit, we can solve these equations simultaneously. First, multiply the first equation by 3 and the second equation by 2 to make the coefficients of x the same: 12x + 6y = 1260 6x + 10y = 1260
Now, subtract the second equation from the first: (12x + 6y) - (6x + 10y) = 1260 - 1260 6x - 4y = 0 y = 1.5x
Now substitute this value into one of the original equations: 4x + 2(1.5x) = 420 4x + 3x = 420 7x = 420 x = 60
Now substitute x back into y = 1.5x: y = 1.5*60 y = 90
Therefore, the cost of one blouse is 60грн, and the cost of one skirt is 90грн. The total cost of one suit (blouse and skirt) would be 60+90 = 150грн.
4) The minimum number of candies that could be in the package is the least common multiple of 4, 6, and 5. The LCM of 4, 6, and 5 is 60.
Thus, the minimum number of candies in the package is 60.
3) Let the cost of one blouse be x, and the cost of one skirt be y.
From the given information:
4x + 2y = 420
3x + 5y = 630
To find the cost of the suit, we can solve these equations simultaneously.
First, multiply the first equation by 3 and the second equation by 2 to make the coefficients of x the same:
12x + 6y = 1260
6x + 10y = 1260
Now, subtract the second equation from the first:
(12x + 6y) - (6x + 10y) = 1260 - 1260
6x - 4y = 0
y = 1.5x
Now substitute this value into one of the original equations:
4x + 2(1.5x) = 420
4x + 3x = 420
7x = 420
x = 60
Now substitute x back into y = 1.5x:
y = 1.5*60
y = 90
Therefore, the cost of one blouse is 60грн, and the cost of one skirt is 90грн. The total cost of one suit (blouse and skirt) would be 60+90 = 150грн.
4) The minimum number of candies that could be in the package is the least common multiple of 4, 6, and 5.
The LCM of 4, 6, and 5 is 60.
Thus, the minimum number of candies in the package is 60.