1) f'(x) = 3(x+1)² 1 (x+2)³ + (x+1)³ 3 (x+2)²= 3(x+1)²(x+2)³ + 3(x+1)³(x+2)²
Substitute x = 1 into the derivative to find f'(1):f'(1) = 3(1+1)²(1+2)³ + 3(1+1)³(1+2)²= 3(2)²(3)³ + 3(2)³(3)²= 3(4)(27) + 3(8)(9)= 3(108) + 3(72)= 324 + 216= 540
Therefore, f'(1) = 540.
2) f'(x) = [(2x - 1)(2) - (2x)(-2)] / (2x + 1)²= (4x - 2 + 4x) / (2x + 1)²= (8x - 2) / (2x + 1)²
Substitute x = 1 into the derivative to find f'(1):f'(1) = (8(1) - 2) / (2(1) + 1)²= (8 - 2) / (2 + 1)²= 6 / 3²= 6 / 9= 2/3
Therefore, f'(1) = 2/3.
3) f'(x) = [(2x²)'(1-7x) - (2x²)(1-7x)'] / (1-7x)²= [4x(1-7x) - 2x²(-7)] / (1-7x)²= (4x - 28x² + 14x²) / (1-7x)²= (-24x² + 4x) / (1-7x)²
Substitute x = 1 into the derivative to find f'(1):f'(1) = (-24(1)² + 4(1)) / (1-7(1))²= (-24 + 4) / (1-7)²= -20 / (-6)²= -20 / 36= -5/9
Therefore, f'(1) = -5/9.
4) f'(x) = [(2x-3)(-4) - (2)(5-4x)] / (5-4x)²= (-8x + 12 + 10 - 8x) / (5-4x)²= (-16x + 22) / (5-4x)²
Substitute x = 1 into the derivative to find f'(1):f'(1) = (-16(1) + 22) / (5-4(1))²= (-16 + 22) / (5-4)²= 6 / 1= 6
Therefore, f'(1) = 6.
1) f'(x) = 3(x+1)² 1 (x+2)³ + (x+1)³ 3 (x+2)²
= 3(x+1)²(x+2)³ + 3(x+1)³(x+2)²
Substitute x = 1 into the derivative to find f'(1):
f'(1) = 3(1+1)²(1+2)³ + 3(1+1)³(1+2)²
= 3(2)²(3)³ + 3(2)³(3)²
= 3(4)(27) + 3(8)(9)
= 3(108) + 3(72)
= 324 + 216
= 540
Therefore, f'(1) = 540.
2) f'(x) = [(2x - 1)(2) - (2x)(-2)] / (2x + 1)²
= (4x - 2 + 4x) / (2x + 1)²
= (8x - 2) / (2x + 1)²
Substitute x = 1 into the derivative to find f'(1):
f'(1) = (8(1) - 2) / (2(1) + 1)²
= (8 - 2) / (2 + 1)²
= 6 / 3²
= 6 / 9
= 2/3
Therefore, f'(1) = 2/3.
3) f'(x) = [(2x²)'(1-7x) - (2x²)(1-7x)'] / (1-7x)²
= [4x(1-7x) - 2x²(-7)] / (1-7x)²
= (4x - 28x² + 14x²) / (1-7x)²
= (-24x² + 4x) / (1-7x)²
Substitute x = 1 into the derivative to find f'(1):
f'(1) = (-24(1)² + 4(1)) / (1-7(1))²
= (-24 + 4) / (1-7)²
= -20 / (-6)²
= -20 / 36
= -5/9
Therefore, f'(1) = -5/9.
4) f'(x) = [(2x-3)(-4) - (2)(5-4x)] / (5-4x)²
= (-8x + 12 + 10 - 8x) / (5-4x)²
= (-16x + 22) / (5-4x)²
Substitute x = 1 into the derivative to find f'(1):
f'(1) = (-16(1) + 22) / (5-4(1))²
= (-16 + 22) / (5-4)²
= 6 / 1
= 6
Therefore, f'(1) = 6.