To find the value of cos(pi/4 - L), we can use the cosine difference formula:
cos(A - B) = cosAcosB + sinAsinB
In this case, A = pi/4 and B = L. Therefore, we have:
cos(pi/4 - L) = cos(pi/4)cos(L) + sin(pi/4)sin(L)
Using the values of sin(pi/4) = 1/sqrt(2) and cos(pi/4) = 1/sqrt(2), we get:
cos(pi/4 - L) = (1/sqrt(2))cos(L) + (1/sqrt(2))sin(L)
cos(pi/4 - L) = (cos(L) + sin(L))/sqrt(2)
Therefore, the solution to cos(pi/4 - L) is:
(cos(L) + sin(L))/sqrt(2)
To find the value of cos(pi/4 - L), we can use the cosine difference formula:
cos(A - B) = cosAcosB + sinAsinB
In this case, A = pi/4 and B = L. Therefore, we have:
cos(pi/4 - L) = cos(pi/4)cos(L) + sin(pi/4)sin(L)
Using the values of sin(pi/4) = 1/sqrt(2) and cos(pi/4) = 1/sqrt(2), we get:
cos(pi/4 - L) = (1/sqrt(2))cos(L) + (1/sqrt(2))sin(L)
cos(pi/4 - L) = (cos(L) + sin(L))/sqrt(2)
Therefore, the solution to cos(pi/4 - L) is:
(cos(L) + sin(L))/sqrt(2)