To simplify this expression, we first need to simplify the square roots within the radical signs.
√48 = √(163) = √16 √3 = 4√3√40 = √(410) = √4 √10 = 2√10√15 = 3√5√27 = 3√3
Now our expression becomes:
4√5 4√3 + 3√5 2√10 - 2√5 * 3√3
Which simplifies to:
16√15 + 6√50 - 6√15
Now, we simplify the radicals under the radical sign:
√50 = √(25*2) = 5√2
So, the expression becomes:
16√15 + 6(5√2) - 6(√15)16√15 + 30√2 - 6√15(16 - 6)√15 + 30√210√15 + 30√2
Therefore, the simplified expression is 10√15 + 30√2.
To simplify this expression, we first need to simplify the square roots within the radical signs.
√48 = √(163) = √16 √3 = 4√3
√40 = √(410) = √4 √10 = 2√10
√15 = 3√5
√27 = 3√3
Now our expression becomes:
4√5 4√3 + 3√5 2√10 - 2√5 * 3√3
Which simplifies to:
16√15 + 6√50 - 6√15
Now, we simplify the radicals under the radical sign:
√50 = √(25*2) = 5√2
So, the expression becomes:
16√15 + 6(5√2) - 6(√15)
16√15 + 30√2 - 6√15
(16 - 6)√15 + 30√2
10√15 + 30√2
Therefore, the simplified expression is 10√15 + 30√2.