To simplify the expression:
[tex]\frac{(2\sqrt{3}+3)\times\sqrt{3}}{\sqrt{3}\times\sqrt{3}}[/tex][tex]= \frac{2\sqrt{3}\times\sqrt{3}+3\times\sqrt{3}}{3}[/tex][tex]= \frac{6+3\sqrt{3}}{3}[/tex][tex]= 2 + \sqrt{3}[/tex]
[tex]\frac{3\sqrt{3} }{3}[/tex][tex]= \sqrt{3}[/tex]
[tex]2 + \sqrt{3} - \sqrt{3} - 3 - 5[/tex][tex]= 2 + 5 - 3 - 5[/tex][tex]= 2[/tex]
Therefore, the simplified form of the expression is 2.
To simplify the expression:
Divide the first fraction by multiplying the denominator with the entire sum inside the fraction:[tex]\frac{(2\sqrt{3}+3)\times\sqrt{3}}{\sqrt{3}\times\sqrt{3}}[/tex]
Simplify the remaining fractions:[tex]= \frac{2\sqrt{3}\times\sqrt{3}+3\times\sqrt{3}}{3}[/tex]
[tex]= \frac{6+3\sqrt{3}}{3}[/tex]
[tex]= 2 + \sqrt{3}[/tex]
[tex]\frac{3\sqrt{3} }{3}[/tex]
Simplify the entire expression:[tex]= \sqrt{3}[/tex]
[tex]2 + \sqrt{3} - \sqrt{3} - 3 - 5[/tex]
[tex]= 2 + 5 - 3 - 5[/tex]
[tex]= 2[/tex]
Therefore, the simplified form of the expression is 2.