Имеется партия из 5 лампочек. Средняя толщина спирали 0,1мм, среднее квадратичное отклонение 0.01мм. Если толщина спирали менее 0.08мм, то при включении в сеть лампочка перегорает. Считая толщину спирали распределенной нормально, найдите вероятность того, что при включении в сеть перегорит не менее двух лампочек.

23 Окт 2019 в 19:52
124 +1
0
Ответы
1

Для решения задачи воспользуемся нормальным распределением.

Сначала найдем вероятность того, что лампочка не перегорит при включении в сеть:
P(X > 0.08) = P(Z > (0.08 - 0.1)/0.01) = P(Z > -0.2) = 1 - P(Z < -0.2) ≈ 1 - 0.4207 ≈ 0.5793

Теперь найдем вероятность того, что перегорят не более одной лампочки:
P(X ≤ 0.08) = 1 - P(X > 0.08) = 1 - 0.5793 = 0.4207

Так как имеется 5 лампочек, то вероятность того, что не более одной лампочки перегорит, равна:
C(5, 0) 0.4207^5 + C(5, 1) 0.4207^4 * 0.5793 ≈ 0.0347

Искомая вероятность, что при включении в сеть перегорит не менее двух лампочек, равна:
1 - 0.0347 = 0.9653

Ответ: 0.9653 или около 96.53%

19 Апр 2024 в 09:49
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 340 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир