Чётность и нечётность. Две одинаковые студенческие группы сдают зачёт. Суровый Профессор сообщил, что незачётов поставлено на 11 больше, чем зачётов. Не ошибся ли наш Суровый Профессор?
Нет, Суровый Профессор не ошибся. Если общее количество студентов в двух группах равно n, то количество зачетов в каждой группе должно быть равно n/2. По условию незачетов поставлено на 11 больше, чем зачетов, то есть n/2 + 11 = n/2 + n/2 + 11, откуда получаем n = 44. Таким образом, в каждой группе по 22 студента, из которых 11 сдали зачет, а 11 - экзаменационные неудачники.
Нет, Суровый Профессор не ошибся. Если общее количество студентов в двух группах равно n, то количество зачетов в каждой группе должно быть равно n/2. По условию незачетов поставлено на 11 больше, чем зачетов, то есть n/2 + 11 = n/2 + n/2 + 11, откуда получаем n = 44. Таким образом, в каждой группе по 22 студента, из которых 11 сдали зачет, а 11 - экзаменационные неудачники.