Вариант 1:
1) log5 по 0,2 = log0,2/log5 = log0,2/log10/log5 = log0,2/log10/(log2 + log5) = log0,2/log10/(log2 + log10/log2) = log0,2/log10/(log2 + 1) = (log0,2 - log10)/(log2 + 1) ≈ (-1,6989 - 1)/(0,3010 + 1) ≈ -2,6989/1,3010 ≈ -2,08
2) Дано: lg3=a, lg5=b. Вычислим log30 по 15: log30 = log2 3 5 = log2 + log3 + log5 = m + a + b = log30 по 15 = log30/(log15) = (log2 + log3 + log5)/(log3 + log5) = (m + a + b)/(a + b) = (a + a + b)/(a + b) = (2a + b)/(a + b)
Вариант 2:
1) log0,1 по 3 = log3/log0,1 = log3/log10/log0,1 = log3/log10/(log3 - 1) = log3/log10/(-0,5229) ≈ log3/(-0,5229) ≈ -0,4771/(-0,5229) ≈ 0,912
2) 1/2 lg 9 - 2/3 lg 8 = 1/2 2 - 2/3 3 = 1 - 2 = -1
Вариант 3:
1) log1 по 0,5 = log0,5/log1 = log0,5/log10 = log0,5/-1 = -log0,5 ≈ -0,3010
2) Дано log2=m. Вычислим log28 по 4: log28 = log2 2 7 = log2 + 1 + log7 = m + 1 + log7.
Вариант 1:
1) log5 по 0,2 = log0,2/log5 = log0,2/log10/log5 = log0,2/log10/(log2 + log5) = log0,2/log10/(log2 + log10/log2) = log0,2/log10/(log2 + 1) = (log0,2 - log10)/(log2 + 1) ≈ (-1,6989 - 1)/(0,3010 + 1) ≈ -2,6989/1,3010 ≈ -2,08
2) Дано: lg3=a, lg5=b. Вычислим log30 по 15: log30 = log2 3 5 = log2 + log3 + log5 = m + a + b = log30 по 15 = log30/(log15) = (log2 + log3 + log5)/(log3 + log5) = (m + a + b)/(a + b) = (a + a + b)/(a + b) = (2a + b)/(a + b)
Вариант 2:
1) log0,1 по 3 = log3/log0,1 = log3/log10/log0,1 = log3/log10/(log3 - 1) = log3/log10/(-0,5229) ≈ log3/(-0,5229) ≈ -0,4771/(-0,5229) ≈ 0,912
2) 1/2 lg 9 - 2/3 lg 8 = 1/2 2 - 2/3 3 = 1 - 2 = -1
Вариант 3:
1) log1 по 0,5 = log0,5/log1 = log0,5/log10 = log0,5/-1 = -log0,5 ≈ -0,3010
2) Дано log2=m. Вычислим log28 по 4: log28 = log2 2 7 = log2 + 1 + log7 = m + 1 + log7.