First, let's simplify each of the trigonometric functions:
Ctg(П/2) = 1/tan(П/2) = 1/(tan(П) / tan(2)) = 1/∞ = 0
tan(П) = sin(П) / cos(П) = 0
sin(2/3П) = sin(2 П/3) = sin(2 60°) = sin(120°) = √3/2
cos(-П/2) = cos(П/2) = cos(90°) = 0
sin(П) = 0
Now, substitute these simplified values into the expression:
0 + 0 - √3/2 - 0 + 0 = -√3/2
Therefore, Ctg(П/2) + tg П - sin(2/3П) - cos(-П/2) + sinП = -√3/2.
First, let's simplify each of the trigonometric functions:
Ctg(П/2) = 1/tan(П/2) = 1/(tan(П) / tan(2)) = 1/∞ = 0
tan(П) = sin(П) / cos(П) = 0
sin(2/3П) = sin(2 П/3) = sin(2 60°) = sin(120°) = √3/2
cos(-П/2) = cos(П/2) = cos(90°) = 0
sin(П) = 0
Now, substitute these simplified values into the expression:
0 + 0 - √3/2 - 0 + 0 = -√3/2
Therefore, Ctg(П/2) + tg П - sin(2/3П) - cos(-П/2) + sinП = -√3/2.