First, we will use the trigonometric identity sin(a + b) = sin(a)cos(b) + cos(a)sin(b) to simplify the expression:
2sin(15)cos(30) + 2sin(30)cos(15)= 2[sin(15)cos(30) + sin(30)cos(15)]
Next, we know that sin(30) = 0.5 and cos(30) = √3/2, and sin(15) = 0.2588 and cos(15) = 0.9659, so:
2[sin(15)cos(30) + sin(30)cos(15)]= 2[0.2588√3/2 + 0.50.9659]= 2[0.2588*1.7321 + 0.4829]= 2[0.4478 + 0.4829]= 2[0.9357]= 1.8714
So, the simplified expression is 1.8714.
First, we will use the trigonometric identity sin(a + b) = sin(a)cos(b) + cos(a)sin(b) to simplify the expression:
2sin(15)cos(30) + 2sin(30)cos(15)
= 2[sin(15)cos(30) + sin(30)cos(15)]
Next, we know that sin(30) = 0.5 and cos(30) = √3/2, and sin(15) = 0.2588 and cos(15) = 0.9659, so:
2[sin(15)cos(30) + sin(30)cos(15)]
= 2[0.2588√3/2 + 0.50.9659]
= 2[0.2588*1.7321 + 0.4829]
= 2[0.4478 + 0.4829]
= 2[0.9357]
= 1.8714
So, the simplified expression is 1.8714.