А) Если к квадрату первого числа прибавить удвоенное второе число, то получится (-7), а если из первого числа вычесть второе, то получится 11.Найдите эти числа б) Найдите два числа, если отношения суммы этих чисел к их разности равно 8 : 1 и разность квадратов этих чисел равна 128. Сколько решений имеет задача?

19 Дек 2019 в 19:42
103 +1
1
Ответы
1

a) Пусть первое число - х, второе число - у.

Уравнения:

1) x^2 + 2y = -7
2) x - y = 11

Из второго уравнения находим x = y + 11 и подставляем в первое:

(y + 11)^2 + 2y = -7
y^2 + 22y + 121 + 2y = -7
y^2 + 24y + 128 = 0
(y + 16)(y + 8) = 0

Отсюда y = -16 или y = -8

Подставляем y = -16 во второе уравнение:

x - (-16) = 11
x + 16 = 11
x = -5

Или подставляем y = -8:

x - (-8) = 11
x + 8 = 11
x = 3

Ответ: первое число может быть -5 или 3, второе число может быть -16 или -8.

б) Пусть первое число - а, второе число - b.

Уравнения:

1) (a + b) / (a - b) = 8
2) a^2 - b^2 = 128

Разделим первое уравнение на второе:

(a + b) / (a - b) = 8
(a + b)(a + b) = 8(a^2 - b^2)
a^2 + 2ab + b^2 = 8a^2 - 8b^2
9b^2 - 2ab + 7a^2 = 0

Из данного уравнения можно увидеть, что у него бесконечное количество решений, так как это уравнение гиперболического типа.

Ответ: задача имеет бесконечное количество решений.

18 Апр в 23:19
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 84 848 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир