Найдите промежутки возрастания и убывания функции:f(x)=3+24x-3x^2-x^3

23 Дек 2019 в 19:41
154 +1
0
Ответы
1

Для нахождения промежутков возрастания и убывания функции f(x)=3+24x-3x^2-x^3 необходимо найти ее производную и найти ее корни.

f'(x) = 24 - 6x - 3x^2
Чтобы найти корни производной, приравняем ее к нулю:
24 - 6x - 3x^2 = 0
0 = -3x^2 - 6x + 24
0 = x^2 + 2x - 8
0 = (x + 4)(x - 2)

Корни: x1 = -4, x2 = 2

Теперь построим таблицу знаков производной:

x | -∞ | -4 | 2 | +∞
f'(x) | + | - | + | +

Таким образом, функция f(x) возрастает на промежутках (-∞, -4) и (2, +∞) и убывает на промежутке (-4, 2).

18 Апр 2024 в 23:11
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 005 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир