1) cos^4(2x) - sin^4(2x) = (cos^2(2x) + sin^2(2x))(cos^2(2x) - sin^2(2x))= cos^2(2x) - sin^2(2x) = cos(4x)
2) cos(2a)/cos(a) - sin(2a)/sin(a) = (cos(2a)sin(a) - sin(2a)cos(a))/(cos(a)*sin(a))= sin(a)cos(a) - 2sin(a)cos(a)/sin(a) = 0
3) 1 + cos(2x) + 2sin^2(x) = 1 + cos^2(x) - sin^2(x) + 2sin^2(x) = 1 + cos^2(x) + sin^2(x) = 2
4) 2sin^2(a) - 1
5) sin^2(x) + cos^4(x) - 0.75
6) 2cos^2(x) - 1
1) cos^4(2x) - sin^4(2x) = (cos^2(2x) + sin^2(2x))(cos^2(2x) - sin^2(2x))
= cos^2(2x) - sin^2(2x) = cos(4x)
2) cos(2a)/cos(a) - sin(2a)/sin(a) = (cos(2a)sin(a) - sin(2a)cos(a))/(cos(a)*sin(a))
= sin(a)cos(a) - 2sin(a)cos(a)/sin(a) = 0
3) 1 + cos(2x) + 2sin^2(x) = 1 + cos^2(x) - sin^2(x) + 2sin^2(x) = 1 + cos^2(x) + sin^2(x) = 2
4) 2sin^2(a) - 1
5) sin^2(x) + cos^4(x) - 0.75
6) 2cos^2(x) - 1