Задача по физике На наклонной плоскости, образующей с горизонтом угол a1= 30°,тело ещё неподвижно. Время t, за которое тело из состояния покоя соскользнет с наклонной плоскости с углом наклона к горизонту a2=45°,если длина наклонной плоскости l=24м, составляет:
Для решения этой задачи можно воспользоваться законом сохранения механической энергии.
Первоначально найдем высоту h, на которую тело поднимется, если начнет скользить с угла наклона а1=30°. h = l sin(a1) = 24 sin(30°) = 12 м
Затем найдем скорость тела на верхней точке подъема, воспользовавшись законом сохранения энергии: m g h = 0.5 m v^2 где m - масса тела, g - ускорение свободного падения, v - скорость тела на верхней точке подъема.
v = sqrt(2 g h) = sqrt(2 9.81 12) = 13.7 м/с
Затем найдем время t, за которое тело проедет расстояние l=24 м с углом наклона а2=45°: t = l / (v cos(a2)) = 24 / (13.7 cos(45°)) = 1.6 с
Ответ: время t, за которое тело из состояния покоя соскользнет с наклонной плоскости с углом наклона к горизонту a2=45°, равно 1.6 с.
Для решения этой задачи можно воспользоваться законом сохранения механической энергии.
Первоначально найдем высоту h, на которую тело поднимется, если начнет скользить с угла наклона а1=30°.
h = l sin(a1) = 24 sin(30°) = 12 м
Затем найдем скорость тела на верхней точке подъема, воспользовавшись законом сохранения энергии:
m g h = 0.5 m v^2
где m - масса тела, g - ускорение свободного падения, v - скорость тела на верхней точке подъема.
v = sqrt(2 g h) = sqrt(2 9.81 12) = 13.7 м/с
Затем найдем время t, за которое тело проедет расстояние l=24 м с углом наклона а2=45°:
t = l / (v cos(a2)) = 24 / (13.7 cos(45°)) = 1.6 с
Ответ: время t, за которое тело из состояния покоя соскользнет с наклонной плоскости с углом наклона к горизонту a2=45°, равно 1.6 с.