В горизонтальной трубе с переменным сечением течет стационарный поток воды. В первом сечении статическое давление 20 н/м2 , во втором сечении статическое давление 120 н/м2 , а скорость течения 10 см/с. Найти скорость воды в первом сечении.
Для решения этой задачи мы можем воспользоваться уравнением Бернулли для стационарного потока жидкости:
P1 + (1/2)ρv1^2 + ρgh1 = P2 + (1/2)ρv2^2 + ρgh2,
где P1 и P2 - статические давления в первом и втором сечениях, ρ - плотность жидкости, v1 и v2 - скорость течения в первом и втором сечениях, g - ускорение свободного падения, h1 и h2 - высоты жидкости над нулевым уровнем в первом и втором сечениях.
Так как сечения основываются на одном уровне, h1 = h2, и потому уравнение выглядит следующим образом:
Для решения этой задачи мы можем воспользоваться уравнением Бернулли для стационарного потока жидкости:
P1 + (1/2)ρv1^2 + ρgh1 = P2 + (1/2)ρv2^2 + ρgh2,
где P1 и P2 - статические давления в первом и втором сечениях, ρ - плотность жидкости, v1 и v2 - скорость течения в первом и втором сечениях, g - ускорение свободного падения, h1 и h2 - высоты жидкости над нулевым уровнем в первом и втором сечениях.
Так как сечения основываются на одном уровне, h1 = h2, и потому уравнение выглядит следующим образом:
P1 + (1/2)ρv1^2 = P2 + (1/2)ρv2^2.
Подставим известные значения и найдем v1:
20 + (1/2)10000,1^2 = 120 + (1/2)10000,1^2,
20 + 0,05 = 120 + 0,05,
0,05 = 100,
v1 = 10 см/с.
Таким образом, скорость воды в первом сечении также равна 10 см/с.