To find the sine, tangent, and cotangent of an angle when the cosine is given as 7/9, we can use trigonometric identities.
Given that cos(angle) = 7/9, we can use the Pythagorean identity to find the sine:
sin^2(angle) + cos^2(angle) = 1sin^2(angle) + (7/9)^2 = 1sin^2(angle) + 49/81 = 1sin^2(angle) = 1 - 49/81sin^2(angle) = 32/81sin(angle) = sqrt(32)/sqrt(81)sin(angle) = sqrt(32)/9
Now, we can find the tangent using the definition of tangent:
tan(angle) = sin(angle)/cos(angle)tan(angle) = (sqrt(32)/9)/(7/9)tan(angle) = sqrt(32)/7
Finally, we can find the cotangent using the reciprocal relationship with the tangent:
cot(angle) = 1/tan(angle)cot(angle) = 7/sqrt(32)
To find the sine, tangent, and cotangent of an angle when the cosine is given as 7/9, we can use trigonometric identities.
Given that cos(angle) = 7/9, we can use the Pythagorean identity to find the sine:
sin^2(angle) + cos^2(angle) = 1
sin^2(angle) + (7/9)^2 = 1
sin^2(angle) + 49/81 = 1
sin^2(angle) = 1 - 49/81
sin^2(angle) = 32/81
sin(angle) = sqrt(32)/sqrt(81)
sin(angle) = sqrt(32)/9
Now, we can find the tangent using the definition of tangent:
tan(angle) = sin(angle)/cos(angle)
tan(angle) = (sqrt(32)/9)/(7/9)
tan(angle) = sqrt(32)/7
Finally, we can find the cotangent using the reciprocal relationship with the tangent:
cot(angle) = 1/tan(angle)
cot(angle) = 7/sqrt(32)