В треугольнике abc проведены медианы AA1=9 и BB1=12,а AB=10.Чему равна третья медиана?Чему равна площадь треугольника ABC?

5 Апр 2020 в 19:49
119 +1
1
Ответы
1

Для начала найдем длины сторон треугольника ABC. Поскольку медиана длиной 9 делит сторону на отрезки длиной 9 и 1, то сторона AB длиной 10 разделена на отрезки длиной 6 и 4, как треугольник и его медианы взаимосвязаны, длина BC равна 8.

Теперь можем найти третью медиану CC1. Поскольку медиана делит сторону в отношении 2:1, то CC1 = BC 2 / 3 = 8 2 / 3 = 16 / 3 = 5(1/3)

Теперь найдем площадь треугольника ABC, используя формулу для медианы: S = 2/3 медиана сторона, так как медиана является основанием параллелограмма, площадь которого равна площади треугольника. Для медианы AA1: S = 2/3 9 10 = 60
Для медианы BB1: S = 2/3 12 8 = 64

Таким образом, площадь треугольника ABC равна 124, если использовать каждую медиану по отдельности. Если использовать третью медиану, то площадь будет также равна 124.

18 Апр в 14:32
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 588 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир