В основании прямой призмы лежит ромб. Углы образованные диагоналями призмы с плоскостью основания равны 60 градусов и 30 градусов. Высота призмы равна 12 см Найдите площадь основания

17 Мая 2020 в 19:42
131 +1
0
Ответы
1

Для начала найдем длину стороны ромба, которая является основанием призмы.

У нас есть, что угол между диагоналями равен 60 градусов, следовательно, угол между сторонами ромба равен 30 градусов. Так как у нас ромб, то все стороны равны.

Таким образом, можем разбить ромб на два равносторонних треугольника. В таком треугольнике у нас есть вершина с углом 30 градусов, гипотенуза у треугольника соответствует стороне ромба и равна d/2 (d - диагональ ромба).

Тогда, применяя тригонометрический закон косинусов, можно найти значение стороны ромба:
cos(30) = a / (d/2)
a = d/2 cos(30)
a = d √3 / 2, так как cos(30) = √3 / 2

Далее, так как у нас ромб, площадь основания будет равна площади этого ромба:
S = a^2 √3 / 2
S = (d √3 / 2)^2 √3 / 2
S = 3 d^2 / 4

Для того чтобы найти длину диагонали d, нам может помочь теорема Пифагора. Рассмотрим только один из треугольников.

(d/2)^2 + (a/2)^2 = 12^2
d^2 / 4 + (d √3 / 4)^2 = 144
d^2 / 4 + 3d^2 / 16 = 144
16d^2 + 3d^2 = 576 16
19d^2 = 9216
d^2 = 9216 / 19
d ≈ 18

Теперь, найдем площадь основания призмы:
S = 3 18^2 / 4
S = 3 81
S = 243

Ответ: Площадь основания призмы равна 243 квадратные см.

18 Апр в 12:04
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 548 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир