В треугольнике ABC биссектриса BK делит сторону AC на отрезки AK и KC так что KC-AK=2 см найдите стороны треугольника если AB:BC =2:3 и его периметр равняеться 25 см

28 Июл 2021 в 19:41
135 +1
0
Ответы
1

Пусть AK = x см. Тогда KC = x + 2 см.

Так как AB : BC = 2 : 3, то мы можем выразить стороны треугольника через коэффициент пропорциональности:

AB = 2k, BC = 3k.

Также зная, что периметр треугольника равен 25 см, мы можем составить уравнение:

AB + BC + AC = 25
2k + 3k + x + x + 2 = 25
5k + 2x + 2 = 25
5k + 2x = 23

Теперь мы можем выразить k через x:

k = (23 - 2x) / 5

Подставим это значение k в соотношение AB : BC = 2 : 3:

2 / 3 = 2k / 3k
2 / 3 = 2 * (23 - 2x) / 15
5 = 46 - 4x
4x = 41
x = 10.25

Теперь найдем стороны треугольника:

AB = 2k = 2 (23 - 2 10.25) / 5 = 9.2 см
BC = 3k = 3 (23 - 2 10.25) / 5 = 13.8 см
AC = AK + KC = 10.25 + 10.25 + 2 = 22.5 см

Итак, стороны треугольника ABC равны 9.2 см, 13.8 см и 22.5 см.

17 Апр 2024 в 13:58
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 255 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир