В треугольнике abc ab=bc ac=8 см E принадлежит Bc причем Be=Ec.Точка E делит периметр треугольника Abc на 2 части, из которых одна больше другой на 2 см. Найдите Ab.
Обозначим отрезок BE = EC = x. Так как точка Е делит отрезок ВС на две равные части, то BE = x, EC = x То есть AC = 8 - 2x Также периметр треугольника ABC равен AB + BC + AC = 2AB + 2x + 8. Так как точка E делит периметр на две части, причем одна больше другой на 2, получаем уравнение: 2AB + 2x + 8 = 2(AB + BC) 2AB + 2x + 8 = 2AB + 2x + 16 8 = 16 Это уравнение не имеет смысла, так как оно приводит к противоречию. Следовательно, такая ситуация невозможна, и в условии ошибка. Таким образом, задача некорректна и не имеет решения.
Обозначим отрезок BE = EC = x.
Так как точка Е делит отрезок ВС на две равные части, то BE = x, EC = x
То есть AC = 8 - 2x
Также периметр треугольника ABC равен AB + BC + AC = 2AB + 2x + 8.
Так как точка E делит периметр на две части, причем одна больше другой на 2, получаем уравнение:
2AB + 2x + 8 = 2(AB + BC)
2AB + 2x + 8 = 2AB + 2x + 16
8 = 16
Это уравнение не имеет смысла, так как оно приводит к противоречию.
Следовательно, такая ситуация невозможна, и в условии ошибка.
Таким образом, задача некорректна и не имеет решения.