Пирамиды, основанием является прямоугольник, диагональ которого является b. Все
боковые грани образуют с основной плоскости на 45° большой угол. Вычисли высоту пирамиды

6 Ноя 2019 в 19:43
128 +1
0
Ответы
1

Для решения данной задачи можно использовать теорему Пифагора для треугольника, образованного диагональю основания пирамиды, ее половиной и высотой пирамиды.

По условию, у нас есть прямоугольный треугольник с катетами a и b (a - половина диагонали основания), гипотенуза которого равна высоте пирамиды h.

Используя теорему Пифагора, получаем уравнение:
a^2 + a^2 = b^2,
2a^2 = b^2,
a^2 = b^2 / 2,
a = b / (√2).

Теперь, зная значение катета a, можем найти высоту пирамиды h:
h = a / √2 = b / (√2 * √2) = b / 2.

Таким образом, высота пирамиды равна половине диагонали ее основания, то есть h = b / 2.

19 Апр в 02:51
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 588 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир