На стороне AD параллелограмма АВСD,взята точка М,К,что DM=DC. а)докажите что СМ-биссектриса угла С параллелограмма .б) найти периметр параллелограмма , если АВ=8,5 см, АМ=3,5 см
а) Так как DM=DC, то треугольник DCM равнобедренный, значит угол DMC равен углу DCM. Так как угол DCM является внутренним углом параллелограмма, то угол DCM равен углу C. Следовательно, СМ является биссектрисой угла C.
б) Так как АМ=3,5 см, то ВМ=5 см (так как АВ=8,5 см). Площадь треугольника АМВ равна S=1/23,55=8,75 см^2. Так как треугольник АМВ прямоугольный, то по теореме Пифагора в АМВ: АВ^2=АМ^2+ВМ^2, откуда AB=9,5 см. Тогда периметр параллелограмма равен 2AB+2AM=29,5+23,5=25 см.
а) Так как DM=DC, то треугольник DCM равнобедренный, значит угол DMC равен углу DCM. Так как угол DCM является внутренним углом параллелограмма, то угол DCM равен углу C. Следовательно, СМ является биссектрисой угла C.
б) Так как АМ=3,5 см, то ВМ=5 см (так как АВ=8,5 см). Площадь треугольника АМВ равна S=1/23,55=8,75 см^2. Так как треугольник АМВ прямоугольный, то по теореме Пифагора в АМВ: АВ^2=АМ^2+ВМ^2, откуда AB=9,5 см. Тогда периметр параллелограмма равен 2AB+2AM=29,5+23,5=25 см.