Для решения этой задачи воспользуемся свойствами прямоугольных треугольников.
По теореме синусов, мы можем найти длину гипотенузы треугольника.
У нас дан угол в 60° и противолежащая ему сторона равна 4√3, это сторона противоположная углу в 30° (так как сумма углов в треугольнике равна 180°).
Теперь найдем длину гипотенузы:sin(60°) = противолежащая сторона / гипотенузаsin(60°) = 4√3 / гипотенуза√3 / 2 = 4√3 / гипотенузагипотенуза = 8
Таким образом, гипотенуза треугольника равна 8.
Для решения этой задачи воспользуемся свойствами прямоугольных треугольников.
По теореме синусов, мы можем найти длину гипотенузы треугольника.
У нас дан угол в 60° и противолежащая ему сторона равна 4√3, это сторона противоположная углу в 30° (так как сумма углов в треугольнике равна 180°).
Теперь найдем длину гипотенузы:
sin(60°) = противолежащая сторона / гипотенуза
sin(60°) = 4√3 / гипотенуза
√3 / 2 = 4√3 / гипотенуза
гипотенуза = 8
Таким образом, гипотенуза треугольника равна 8.