В четырехугольнике ABCD отрезок BD проходит через середину отрезка AC(ну короч они в середине пересекаются),AD паралельно BC.Докажите,что AB=CD

2 Янв 2020 в 19:40
81 +1
0
Ответы
1

Пусть точка E - середина отрезка AC. Так как BD проходит через точку E, то он делит отрезок AC пополам, следовательно, AE = EC.

Так как AD || BC, то треугольники ADE и CBE подобны (по двум углам). Тогда соответственно стороны треугольников пропорциональны:

AD/AE = BC/BE

Поскольку AE = EC, посчитав отношения получим:

AD/AE = BC/BE
AD/EC = BC/BE
AD/EC = BC/(EC)
AD = BC

Таким образом, стороны смежных сторон четырехугольника равны, что равносильно AB = CD.

18 Апр в 21:59
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 91 905 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир