1.Найдите длину окружности с радиусом 9 см.Чему равна длина ее дуги с градусной мерой 20 градусов?2.Длина окружности,вписанной в правильный треугольник,равна 2 корень из 3 П см.Найдите длину окружности,описанной около этого треугольника.
Длина окружности с радиусом 9 см вычисляется по формуле L = 2πr, где r - радиус окружности. L = 2π*9 = 18π см
Для нахождения длины дуги с градусной мерой 20 градусов можно воспользоваться формулой длины дуги: L(угол) = (градусная мера дуги / 360) длина окружности L(20) = (20 / 360) (18π) ≈ 3.14 см
Поскольку окружность вписана в правильный треугольник, то радиус окружности является радиусом вписанной окружности, а длина этого радиуса равна стороне треугольника. Пусть сторона треугольника равна а. Тогда длина вписанной окружности (окружности радиуса а) равна 2πа. L(вписанная) = 2π*а = 2√3 см
Для нахождения длины окружности, описанной около треугольника, можно воспользоваться тем, что радиус описанной окружности равен радиусу окружности, вписанной в треугольник. Таким образом, длина описанной окружности (окружности радиуса а) также равна 2πа. L(описанная) = 2π*а = 2√3 см
L = 2π*9 = 18π см
Для нахождения длины дуги с градусной мерой 20 градусов можно воспользоваться формулой длины дуги:
Поскольку окружность вписана в правильный треугольник, то радиус окружности является радиусом вписанной окружности, а длина этого радиуса равна стороне треугольника. Пусть сторона треугольника равна а. Тогда длина вписанной окружности (окружности радиуса а) равна 2πа.L(угол) = (градусная мера дуги / 360) длина окружности
L(20) = (20 / 360) (18π) ≈ 3.14 см
L(вписанная) = 2π*а = 2√3 см
Для нахождения длины окружности, описанной около треугольника, можно воспользоваться тем, что радиус описанной окружности равен радиусу окружности, вписанной в треугольник. Таким образом, длина описанной окружности (окружности радиуса а) также равна 2πа.
L(описанная) = 2π*а = 2√3 см