Сторона основания правильной треугольной призмы 8см,боковое ребро 12см,тогда обьем призмы равен

17 Янв 2020 в 19:45
89 +1
1
Ответы
1

объем призмы вычисляется по формуле V = Ah, где A - площадь основания, h - высота призмы.

Для правильной треугольной призмы площадь основания равна S = a^2 * sqrt(3) / 4, где а - длина стороны основания.

Так как в нашем случае сторона основания равна 8 см, то площадь основания будет S = 8^2 * sqrt(3) / 4 = 16sqrt(3) см^2.

Также, из геометрических свойств правильной треугольной призмы, высота призмы h равна h = a * sqrt(3) / 2, где a - длина стороны основания.

В нашем случае h = 8 * sqrt(3) / 2 = 4sqrt(3) см.

Теперь можем найти объем призмы: V = S h = 16sqrt(3) 4sqrt(3) = 64 * 3 = 192 см^3.

Итак, объем правильной треугольной призмы с основанием 8 см и боковым ребром 12 см равен 192 см^3.

18 Апр в 19:52
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 718 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир