Вычислите площадь равнобедренной трапеции если ее основание равны 10 и 24, а один из углов равен 135

14 Фев 2020 в 19:44
86 +1
0
Ответы
1

Для вычисления площади равнобедренной трапеции, мы можем использовать формулу:

S = ((a + b) / 2) * h

где a и b - основания трапеции, h - высота трапеции.

Также, из условия задачи, мы знаем, что один из углов равен 135 градусов, что означает, что высота трапеции может быть найдена с помощью тригонометрических функций. Так как треугольник, образованный высотой и боковой стороной трапеции, является прямоугольным, мы можем использовать тангенс угла 135 градусов, чтобы найти высоту:

tan(135) = h / (b - a)

h = (b - a) * tan(135)

Заметим, что tan(135) = -1, поэтому:

h = (24 - 10) * (-1) = -14

Теперь мы можем вычислить площадь трапеции:

S = ((10 + 24) / 2) (-14) = 17 (-14) = -238

Площадь равнобедренной трапеции равна 238 квадратных единиц.

18 Апр в 17:20
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 588 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир