1) В прямоугольном треугольнике АВС угол С=90 градусам,АС=30 см.Найдите:а)Сторону АВб)Высоту СD,проведенную к гипотенузе

15 Фев 2020 в 19:44
111 +1
0
Ответы
1

а) Для нахождения стороны AB воспользуемся теоремой Пифагора: AB^2 = AC^2 + BC^2, где AC = 30 см.
Поскольку угол С прямой, то АВ - гипотенуза (самая длинная сторона) и BC и CD - катеты. Подставим известные значения:
AB^2 = 30^2 + BC^2
AB^2 = 900 + BC^2
AB^2 = BC^2 + 900

б) Высота CD, проведенная к гипотенузе AB, делит прямоугольный треугольник на два прямоугольных треугольника, подобных исходному треугольнику. Высота является гипотенузой для одного из этих подобных треугольников. В итоге получаем, что отношение гипотенузы к ее катету в этом подобном треугольнике равно отношению гипотенузы к другому катету в первоначальном треугольнике:
CD / 30 = 30 / AB
AB * CD = 30^2

Теперь решим систему уравнений, чтобы найти значения AB и CD:
AB^2 = BC^2 + 900
AB * CD = 900

AB = 30, CD = 30

Ответ:
а) Сторона AB равна 30 см
б) Высота CD равна 30 см

18 Апр в 17:16
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 718 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир