log a (x) = log a (a^4*√b/c^3)
По свойству логарифмов log a (a^4) + log a (√b) - log a (c^3)
log a (a^4) = 4log a (√b) = 1/2 log a (b) = 1/2 3 = 3/2log a (c^3) = 3 log a (c) = 3 (-2) = -6
Итак, x = a^4 √b / c^3 = a^4 b^(1/2) / c^3 = a^4 b/(c^3)^(1/2) = a^4 b/c^(3/2)
log a (x) = log a (a^4 * b/c^(3/2)) = log a (a^4) + log a (b) - log a (c^(3/2))
log a (x) = 4 + 3 -(-6) = 4 + 3 + 6 = 13
Итак, log a (x) = 13.
log a (x) = log a (a^4*√b/c^3)
По свойству логарифмов log a (a^4) + log a (√b) - log a (c^3)
log a (a^4) = 4
log a (√b) = 1/2 log a (b) = 1/2 3 = 3/2
log a (c^3) = 3 log a (c) = 3 (-2) = -6
Итак, x = a^4 √b / c^3 = a^4 b^(1/2) / c^3 = a^4 b/(c^3)^(1/2) = a^4 b/c^(3/2)
log a (x) = log a (a^4 * b/c^(3/2)) = log a (a^4) + log a (b) - log a (c^(3/2))
log a (x) = 4 + 3 -(-6) = 4 + 3 + 6 = 13
Итак, log a (x) = 13.