Длина вектора. Геометрия. Даны точки A(10;6) и B(8;18).
Найди координаты точек C и D, если известно, что точка B — середина отрезка AC, а точка D — середина отрезка BC.
Найдите
C=(;);
D=(;).

28 Ноя 2020 в 19:41
277 +1
0
Ответы
1

Для нахождения координат точек C и D можно воспользоваться формулой нахождения средней точки между двумя точками:

Для нахождения координат точки C:
C(x; y) = ((Ax + Bx) / 2 ; (Ay + By) / 2 )
C(x; y) = ((10 + x) / 2 ; (6 + y) / 2 )

Так как точка B - середина отрезка AC, то координаты C и B равны:
((10 + x) / 2 = 8 -> 10 + x = 16 -> x = 6
((6 + y) / 2 = 18 -> 6 + y = 36 -> y = 30

Таким образом, координаты точки C равны: C(6; 30).

Для нахождения координат точки D:
D(x; y) = ((Bx + Cx) / 2 ; (By + Cy) / 2 )
D(x; y) = ((8 + 6) / 2 ; (18 + 30) / 2 )
D(x; y) = (7 ; 24)

Таким образом, координаты точки D равны: D(7; 24).

17 Апр в 21:45
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 91 947 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир