First, let's simplify each of the fractions separately.
5b / (b - 3) = 5
(b + 6) / (2b - 6) = (b + 6) / 2(b - 3) = (b + 6) / 2(b - 3)
90 / (b^2 + 66)
Now, let's multiply all the fractions together:
(5) ((b + 6) / 2(b - 3)) (90 / (b^2 + 66))
= (5(b + 6) * 90) / (2(b - 3)(b^2 + 66))
= (450(b + 6)) / (2(b - 3)(b^2 + 66))
= (450b + 2700) / (2b^3 - 6b^2 + 66b - 198)
So, the simplified expression is (450b + 2700) / (2b^3 - 6b^2 + 66b - 198).
First, let's simplify each of the fractions separately.
5b / (b - 3) = 5
(b + 6) / (2b - 6) = (b + 6) / 2(b - 3) = (b + 6) / 2(b - 3)
90 / (b^2 + 66)
Now, let's multiply all the fractions together:
(5) ((b + 6) / 2(b - 3)) (90 / (b^2 + 66))
= (5(b + 6) * 90) / (2(b - 3)(b^2 + 66))
= (450(b + 6)) / (2(b - 3)(b^2 + 66))
= (450b + 2700) / (2b^3 - 6b^2 + 66b - 198)
So, the simplified expression is (450b + 2700) / (2b^3 - 6b^2 + 66b - 198).