To simplify the expression (m - 2√(mn) + n) / (m - n), we can first simplify the numerator:
m - 2√(mn) + n = √m^2 - 2√mn + √n^2= (√m - √n)^2= (m - 2√mn + n)
Now, we can rewrite the original expression as:
(m - 2√(mn) + n) / (m - n) = [(√m - √n)^2] / (m - n)= [(√m - √n)(√m - √n)] / (m - n)= (√m - √n)(√m - √n) / (m - n)= (√m - √n)^2 / (m - n)= (m - 2√mn + n) / (m - n)
Therefore, the simplified expression is (m - 2√mn + n) / (m - n).
To simplify the expression (m - 2√(mn) + n) / (m - n), we can first simplify the numerator:
m - 2√(mn) + n = √m^2 - 2√mn + √n^2
= (√m - √n)^2
= (m - 2√mn + n)
Now, we can rewrite the original expression as:
(m - 2√(mn) + n) / (m - n) = [(√m - √n)^2] / (m - n)
= [(√m - √n)(√m - √n)] / (m - n)
= (√m - √n)(√m - √n) / (m - n)
= (√m - √n)^2 / (m - n)
= (m - 2√mn + n) / (m - n)
Therefore, the simplified expression is (m - 2√mn + n) / (m - n).