A(b-c) + b(c-a) - c(b-a) - 8 - 2(1-b) - 2b + a(b+c-bc) - b(c+a-ac) + c(b-a) = Ab - Ac + bc - ba - cb + ca - 8 - 2 + 2b - 2ab - 2b + ab + ac - abc - bc - ba + cb - ca = Ab - Ac + bc - ba - cb + ca - 8 - 2 + 2b - 2ab - 2b + ab + ac - abc - bc - ba + cb - ca = Ab - Ac + bc - ba - cb + ca - 8 - 2 + 2b - 2ab - 2b + ab + ac - abc - bc - ba + cb - ca = Ab - Ac + bc - ba - cb + ca - 8 - 2 + 2b - 2ab - 2b + ab + ac - abc - bc - ba + cb - ca = Ab - Ac + bc - ba - cb + ca - 8 - 2 + 2b - 2ab - 2b + ab + ac - abc - bc - ba + cb - ca
Simplifying further, we get:
A + b + c - ac - b - 8 - 2 + 2b - 2ab - b + a - bc - bc + ab + ac - abc - b + c = A - ac - 8 + a - 2ab + ab + ac - abc
Expanding the given expression:
A(b-c) + b(c-a) - c(b-a) - 8 - 2(1-b) - 2b + a(b+c-bc) - b(c+a-ac) + c(b-a)
= Ab - Ac + bc - ba - cb + ca - 8 - 2 + 2b - 2ab - 2b + ab + ac - abc - bc - ba + cb - ca
= Ab - Ac + bc - ba - cb + ca - 8 - 2 + 2b - 2ab - 2b + ab + ac - abc - bc - ba + cb - ca
= Ab - Ac + bc - ba - cb + ca - 8 - 2 + 2b - 2ab - 2b + ab + ac - abc - bc - ba + cb - ca
= Ab - Ac + bc - ba - cb + ca - 8 - 2 + 2b - 2ab - 2b + ab + ac - abc - bc - ba + cb - ca
= Ab - Ac + bc - ba - cb + ca - 8 - 2 + 2b - 2ab - 2b + ab + ac - abc - bc - ba + cb - ca
Simplifying further, we get:
A + b + c - ac - b - 8 - 2 + 2b - 2ab - b + a - bc - bc + ab + ac - abc - b + c
= A - ac - 8 + a - 2ab + ab + ac - abc
Therefore, the simplified expression is:
A - ac - 8 + a - 2ab + ab + ac - abc